Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Tetraaquaphenanthrolinemanganese(II) sulfate dihydrate

Hui Wu,* Jun Zhou, Huizhen Yu, Leilei Lu, Zhou Xu, Yu Wan and Daqing Shi

Department of Chemistry, Xuzhou Normal
University, Xuzhou, Jiangsu 221116, People's Republic of China

Correspondence e-mail:
wuhui72@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.031$
$w R$ factor $=0.069$
Data-to-parameter ratio $=12.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

In the title compound, $\left[\mathrm{Mn}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{SO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, the $\mathrm{Mn}^{\mathrm{II}}$ atom is coordinated by two N atoms of 1,10-phenanthroline and four water O atoms in a distorted octahedral geometry. The aqua ligands are connected to the sulfate anion and water molecules of crystallization via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

5-Fluorouracil (5-FU) possesses an antitumor activity (Heidelderger, 1957). 1,10-Phenanthroline (phen) also has biological activity, such as a sterilizing effect (Husseini, 1981). In the course of the preparation of manganese complexes with mixed ligands, we obtained the title compound, (I), which is composed of $\mathrm{Mn}^{\mathrm{II}}$, phen, water molecules and a sulfate anion. 5-FU was not incorporated in the crystal structure, but it may have had some effect on the formation of the title mononuclear $\mathrm{Mn}^{\mathrm{II}}$ complex.

(I)

In (I), the Mn atom is coordinated by two N atoms from a phen ligand and four O atoms of the aqua ligands in a distorted octahedral geometry (Fig. 1 and Table 1). Atoms N1/

Figure 1
The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Received 22 April 2004 Accepted 12 May 2004 Online 22 May 2004

Figure 2
The crystal structure of (I). Dashed lines indicate hydrogen bonds.
$\mathrm{C} 12 / \mathrm{C} 11 / \mathrm{N} 2$ are coplanar (plane 1), with atom Mn deviating from the plane by 0.0126 (8) A. The dihedral angles between plane 1 and the planes of the pyridine rings are 2.77 (13) and 1.97 (12) ${ }^{\circ}$ for $\mathrm{N} 1 / \mathrm{C} 1-\mathrm{C} 4 / \mathrm{C} 12$ and $\mathrm{N} 2 / \mathrm{C} 7-\mathrm{C} 11$, respectively. A sulfate anion and the two water molecules of crystallization are involved in the formation of intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds with aqua ligands (Fig. 2 and Table 2).

Experimental

The title compound, (I), was prepared by reacting $\mathrm{MnSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ with 1,10-phenanthroline and 5-FU (1:1:1) in ethanol ($\mathrm{pH}=4$). Single crystals of (I) suitable for X-ray study were obtained by slow evaporation of an aqueous ethanol solution at 293 K for a month.

Crystal data

$\left[\mathrm{Mn}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{SO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=439.30$
Orthorhombic, Pbca
$a=8.877$ (1) £
$b=18.508$ (3) \AA
$c=22.098(3) \AA$
$V=3630.6(9) \AA^{3}$
$Z=8$
$D_{x}=1.607 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Siemens $P 4$ diffractometer
ω scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.608, T_{\text {max }}=0.699$
4394 measured reflections
3568 independent reflections 2501 reflections with $I>2 \sigma(I)$

Mo $K \alpha$ radiation
Cell parameters from 31 reflections
$\theta=4.1-13.6^{\circ}$
$\mu=0.90 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Prism, yellow
$0.56 \times 0.44 \times 0.40 \mathrm{~mm}$
$R_{\text {int }}=0.037$
$\theta_{\text {max }}=26.0^{\circ}$
$h=0 \rightarrow 10$
$k=0 \rightarrow 22$
$l=-1 \rightarrow 27$
3 standard reflections
\quad every 97 reflections
intensity decay: 7.5%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.069$
$S=0.89$
3568 reflections
284 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0341 P)^{2}\right] \\
& \quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.23 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.29 \mathrm{e}^{-3} \AA^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0076(3)
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right)$.

$\mathrm{Mn}-\mathrm{O} 4$	$2.1530(16)$	$\mathrm{Mn}-\mathrm{O} 2$	$2.2018(17)$
$\mathrm{Mn}-\mathrm{O} 1$	$2.1580(16)$	$\mathrm{Mn}-\mathrm{N} 1$	$2.2513(19)$
$\mathrm{Mn}-\mathrm{O} 3$	$2.1829(17)$	$\mathrm{Mn}-\mathrm{N} 2$	$2.2747(19)$
$\mathrm{O} 4-\mathrm{Mn}-\mathrm{O} 1$	$87.56(7)$	$\mathrm{O} 3-\mathrm{Mn}-\mathrm{N} 1$	$86.76(7)$
$\mathrm{O} 4-\mathrm{Mn}-\mathrm{O} 3$	$86.83(7)$	$\mathrm{O} 2-\mathrm{Mn}-\mathrm{N} 1$	$98.39(7)$
$\mathrm{O} 1-\mathrm{Mn}-\mathrm{O} 3$	$168.33(7)$	$\mathrm{O} 4-\mathrm{Mn}-\mathrm{N} 2$	$91.60(8)$
$\mathrm{O} 4-\mathrm{Mn}-\mathrm{O} 2$	$98.01(8)$	$\mathrm{O} 1-\mathrm{Mn}-\mathrm{N} 2$	$87.22(7)$
$\mathrm{O} 1-\mathrm{Mn}-\mathrm{O} 2$	$86.40(7)$	$\mathrm{O} 3-\mathrm{Mn}-\mathrm{N} 2$	$103.16(7)$
$\mathrm{O} 3-\mathrm{Mn}-\mathrm{O} 2$	$84.25(7)$	$\mathrm{O} 2-\mathrm{Mn}-\mathrm{N} 2$	$168.22(7)$
$\mathrm{O} 4-\mathrm{Mn}-\mathrm{N} 1$	$161.69(8)$	$\mathrm{N} 1-\mathrm{Mn}-\mathrm{N} 2$	$73.22(7)$
$\mathrm{O} 1-\mathrm{Mn}-\mathrm{N} 1$	$101.53(7)$		
$\mathrm{N} 2-\mathrm{C} 11-\mathrm{C} 12-\mathrm{N} 1$	$-2.9(3)$	$\mathrm{C} 7-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 4$	$-1.9(3)$

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 A \cdots \mathrm{O}{ }^{\text {i }}$	0.818 (9)	1.860 (11)	2.671 (2)	171 (2)
$\mathrm{O} 1-\mathrm{H} 1 B \cdots \mathrm{O} 8^{\text {ii }}$	0.823 (9)	1.958 (11)	2.775 (2)	172 (3)
$\mathrm{O} 2-\mathrm{H} 2 \mathrm{~B} \cdots \mathrm{O} 9^{\text {ii }}$	0.829 (9)	1.873 (10)	2.691 (2)	169 (3)
$\mathrm{O} 2-\mathrm{H} 2 A \cdots \mathrm{O} 10$	0.826 (10)	1.866 (12)	2.684 (2)	171 (4)
$\mathrm{O} 3-\mathrm{H} 3 A \cdots \mathrm{O}$	0.813 (9)	1.870 (11)	2.679 (3)	173 (3)
$\mathrm{O} 3-\mathrm{H} 3 B \cdots \mathrm{O} 2{ }^{\text {iii }}$	0.814 (9)	2.187 (10)	2.999 (3)	175 (2)
$\mathrm{O} 4-\mathrm{H} 4 \mathrm{~B} \cdots \mathrm{O}^{\text {i }}$	0.815 (9)	1.985 (9)	2.793 (2)	171 (2)
$\mathrm{O} 4-\mathrm{H} 4 A \cdots \mathrm{O} 10^{\text {iii }}$	0.823 (9)	1.924 (11)	2.740 (2)	172 (3)
O5-H5A . . 06	0.822 (9)	1.958 (10)	2.771 (3)	170 (2)
O5- $\mathrm{H} 5 \mathrm{~B} \cdots \mathrm{O} 7$	0.827 (9)	2.021 (9)	2.847 (2)	176 (2)
$\mathrm{O} 6-\mathrm{H} 6 \mathrm{~B} \cdots \mathrm{O} 8^{\text {iv }}$	0.818 (10)	2.080 (16)	2.852 (3)	157 (4)
$\mathrm{O} 6-\mathrm{H} 6 A \cdots \mathrm{O} 9^{\text {v }}$	0.816 (10)	2.090 (10)	2.905 (3)	177 (3)

Symmetry codes: (i) $\frac{1}{2}-x, y-\frac{1}{2}, z$; (ii) $-x, 1-y, 1-z$; (iii) $1-x, 1-y, 1-z$; (iv) $\frac{1}{2}+x, \frac{3}{2}-y, 1-z$; (v) $1+x, y, z$.

The water H atoms were located in difference Fourier syntheses and refined isotropically. The H atoms of 1,10 -phenanthroline were placed in geometrically calculated positions, with $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})$ values of $1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 1997); program(s) used to solve structure: $S H E L X T L$; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

We thank the 'Natural Science Research Project' (No. JH03-038) and the 'Hi-Tech Development Project' (No. 03 KJD150213) of Jiangsu Province for financial support.

References

Heidelderger, C. (1957). Nature (London), 179, 663-665.
Husseini, R. H. (1981). Microbios. Lett. 16, 85-88.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

metal-organic papers

Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA

Siemens(1994). XSCANS. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

